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We have studied the transition between oscillatory and steady convection in a simpli- 
fied model of two-dimensional thermosolutal convection. This model is exact to second 
order in the amplitude of the motion and is qualitatively accurate for larger amplitudes. 
If the ratio of the solutal diffusivity to the thermal diffusivity is sufficiently smell and 
the solutal Rayleigh number, R,, sufficiently large, convection sets in as overstable 
oscillations, and these oscillations grow in amplitude as the thermal Rayleigh number, 
R,, is increased. In addition to this oscillatory branch, there is a branch of steady 
solutions that bifurcates from the static equilibrium towards lower values of RT; this 
subcritical branch is initially unstable but acquires stability as it turns round towards 
increasing values of RT. For moderate values of R, the oscillatory branch ends on the 
unstable (subcritical) portion of the steady branch, where the period of the oscillations 
becomes infinite. For larger values of Rs a birfurcation from symmetrical to asym- 
metrical oscillations is followed by a succession of bifurcations, at each of which the 
period doubles, until the motion becomes aperiodic at  some finite value of R,. The 
chaotic solutions persist as R, is further increased but eventually they lose stability 
and there is a transition to the stable steady branch. These results are consistent with 
the behaviour of solutions of the full two-dimensional problem and suggest that period- 
doubling, followed by the appearance of a strange attractor, is a characteristic feature 
o€ double-diffusive convection. 

1. Introduction 
Geophysics and astrophysics provide many examples of convective phenomena 

where motion first appears as overstable oscillations. One such example is a fluid layer 
with a dissolved solute. When the solute gradient is stable, any perturbation to the 
stat'ic equilibrium leads to transient oscillat.ions. It is, however, possible to maintain 
oscillatory motion at some finite amplitude by heating t,he layer from below. If the 
rate of heating is increased the oscillations grow in amplitude until they are superseded 
by regular convect,ion. This pattern of behaviour occurs only if the solute diffuses less 
rapidly than heat and is characterist,ic of double-diffusive convection. Similar effects 
can be produced with salt and sugar in the laborat,ory, with heat and salt in the ocean, 
or with heat and helium in the interior of a star. More complicated double-diffusive 
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phenomena appear if the destabilizing thermal gradient is opposed by the effects of a 
magnetic field or rotation. 

Most theoretical studies of double-diffusive convection have concentrated on the 
linearized equations. Nonlinear theory is more complicated : in certain parameter 
ranges oscillatory and steady convection coexist and the transition from one to the 
other has proved difficult to understand. Our aim is to study a system in which this 
transition can be explored in detail. For this purpose we confine our attention to 
thermosolutal convection, which provides both the simplest and the most thoroughly 
investigated example of double-diffusive behaviour (see, for example, Spiegel 1972, 
Turner 1973, Schechter, Velarde & Platten 1974, Huppert 1977). 

The transition from oscillatory to steady motion has been followed in a series of 
numerical experiments on two-dimensional thermosolutal convection (Huppert 1976, 
1977; Huppert & Moore 1976). For moderate values of the solute gradient, measured 
by a solutal Rayleigh number R,, the oscillations are always symmetrical, with no 
distinction between opposite senses of motion; as the thermal gradient, measured by 
a thermal Rayleigh number R,, is increased the oscillations keep growing until they 
abruptly disappear and the solution jumps to a steadily convecting state. With more 
extreme values of R, Huppert & Moore find that the pattern changes: the sym- 
metrical oscillations bifurcate to asymmetrical oscillations, with one or other sense 
preferred. Then, as R, is increased still further, successive oscillations cease to be 
identical and the motion becomes aperiodic before jumping to a steady state. Huppert 
(1976) contrasted this transition with various hypothetical descriptions of the onset 
of turbulence. 

One possibility, which has recently attracted much attention (see, for example, 
Pomeau 1977, Feigenbaum 1978, 1979, Shimada & Nagashima 1978, Shimizu & 
Morioka 1978, Curry 1978, Robbins 1978, Ito 1979, Franceschini & Tebaldi 1979, 
Boldrighini & Franceschini 1979, Coullet, Tresser & ArnBodo 1979, Marzec & Spiegel 
1980, Franceschini 1980), is that the transition to aperiodic behaviour proceeds by a 
sequence of bifurcations, at each of which the period doubles, until the solution 
becomes chaotic, with the appearance of a strange attractor at some finite value Of R,. 
Unfortunately, it  is not yet possible to solve the relevant partial differential equations 
with sufficient accuracy to determine whether such a sequence of bifurcations actually 
occurs for thermosolutal convection. We shall therefore follow a different approach. 
Instead of grappling with the full problem we take a simplified model, put forward by 
Veronis (1965), which, as we shall see, reproduces qualitative features of the full 
system with remarkable fidelity. This model problem, consisting of five coupled non- 
linear ordinary differential equations, can easily be solved with sufficient accuracy by 
a combination of analytical and numerical techniques. In an appropriate parameter 
range we areindeed able to identify successive bifurcations at which the period doubles 
(and quadruples, etc.) before the solutions become aperiodic. 

When R, = 0 our fifth-order system decouples; the resulting third-order system is 
identical with the Lorenz (1963) model, which can be derived from the partial differen- 
tial equations that describe two-dimensional Rayleigh-BBnard convection. The Lorenz 
equations exemplify the dangers of representing nonlinear problems by drastically 
truncated systems. They possess steady solutions (corresponding to steady convection) 
which become unstable to oscillatory perturbations when R, exceeds a critical value 
Rc$. A stable strange-attracting set appears a t  a value of R, slightly less than RcL,). 

L. N .  Da Costa, E .  Knobloch and N .  0. Weiss 
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The Hopf bifurcation at R, = R(!$ is subcritical (McLaughlin & Martin 1975; Marsden 
& McCracken 1976; Robbins 1977); thus there is a sudden transition from a steady 
solution to aperiodic oscillations as RT isincreased through R(!$. For RT R($, on the 
other hand, the solutions exhibit symmetric oscillations (Robbins 1978); if R, is now 
gradually decreased there is first a bifurcation to asymmetric oscillations (Shimada & 
Nagashima 1978; Shimizu & Morioka 1978; Robbins 1978) which is followed by an 
infinite sequence of bifurcations, at  each of which the period doubles, leading to 
chaotic behaviour and the appearance of a strange attracting set beyond the accumu- 
lation point. As R, is further reduced, more complicated periodic solutions appear, 
followed by another transition to chaos and so forth. Thus the Lorenz system provides 
an excellent paradigm for studying period doubling and the appearance of a strange 
attractor. However, although these equations do describe the behaviour of certain real 
systems (e.g. Malkus 1972, Haken 1975), their solutions differ from those of the two- 
dimensional problem from which they were originally derived. Curry (1978) has de- 
veloped a fourteenth-order system which approximates more closely to the full 
problem: he finds that the value of the Rayleigh number at  the Hopf bifurcation 
(corresponding to R($)) is increased and that the bifurcation is now supercritical. For 
R ,  slightly greater than R(k) there are finite-amplitude oscillations about the steady 
solutions; as RT is increased there are further bifurcations leading to period doubling, 
a torus and, probably, a strange attractor. Accurate solutions of the partial differential 
equations, obtained using finite differences, also show oscillations about the steady 
state (Moore & Weiss 1973); these oscillations persist as R, is increased but neither 
period doubling nor chaotic behaviour have been detected. On the other hand, the 
correspondence between the solutions of our fifth-order system and the results of the 
numerical experiments of Huppert & Moore is so close that period doubling must, 
we believe, be a feature of the full problem too. Taken together, these computations 
therefore provide the best available evidence for the appearance of a strange attractor 
in a finite fluid system. 

In this paper we first describe the model problem and summarize the results of 
linear and finite-amplitude theory. We then investigate steady convection and its 
stability. The principal results are found in $ 5 ,  where we present the oscillatory 
solutions. For moderate values of R,, the oscillatory branch (defined by the amplitude 
as a function of RT) terminates on the unstable steady branch, where the period of 
oscillations becomes infinite; for larger R,, the oscillatory branch typically reaches a 
maximum before the symmetrical oscillations bifurcate to asymmet.rica1 solutions. 
Then, as RT is increased still further, successive oscillations cease to be identical. The 
solution, however, remains periodic and repeats itself after every second oscillation 
so that its period is now twice the period of the original solution. Beyond the next 
transition, the solution repeats itself after every fourth oscillation, and so on. We 
have been able to identify doubling, quadrupling and octupling of the period before 
the solutions become aperiodic. Eventually the aperiodic oscillations lose stability 
and the solution settles on to the steady branch. Many of these features have also been 
found in a parallel study of convection in a magnetic field (Knobloch, Weiss & Da 
Costa 1981). 
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2. Themodel 
We consider t.wo-dimensional convection in a horizontal layer of fluid confined 

between the planes z = 0 and z = h. In the Boussinesq approximation the density is 
taken to be p = po[ 1 - aT +PSI, where T is the temperature and S the solute density 
and a,p > 0. Following Huppert & Moore (1976), we introduce a stream function 
Y(z, z )  so that the velocity 

(1)  
and set 

T = T o + A T [ l - ~ / h + O ( z , ~ ) ] ,  S = s , + h S [ i - ~ / h + C ( x , ~ ) ] .  (2) 

We express all variables in dimensionless form, measuring lengths and time in terms 
of h and h2/KT, respectively. The governing equations can then be written as 

u = ( -  a , r ,  0, 8,Y) 

+[a, v2r + J(Y, V ~ Y  13 = RT a, o - R, a, c + V ~ Y ,  (3) 

a,o+J(yo) = a ,~+v2o ,  (4) 

a,c+J(Y,C) = a,Y"+7v2x, 
where 

gaATh3 g @Ash3 
( T = -  , 7 = -  K s  , R T = -  , R s = - .  

V 

K T  K T  K T  V K T  V 

Here K T ,  K~ and v are the thermal, solutal and viscous diffusivit,ies and the other 
symbols have their usual meanings; note, however, that we do not exclude the 
possibility that 7 > 1. We restrict attention to the region (0 < x c A; 0 c z < l} and 
adopt the simplest boundary conditions, so that 

1. (7) 
Y=O,  a,zv=o,  o=o ,  c = o  ( z = o , i ) ,  

Y = 0, a:Y = 0, a,@ = 0, a,c = 0 (x = 0 ,h ) .  

Next we suppose that the variables are expanded in Fourier series and adopt a 
minimal representation (Veronis 1965) by setting 

A nx 
Y = 2(2p)t-sin-sin7rza(t*), n h  

n (9) 

where t* = pt and p = n2(1 + 1 /A2) .  Substituting these five modes into the equations 
and neglecting all higher harmonics generated by their interactions, we obtain the 
equations 

a' = ~ [ - ~ + r , b - r S d ] ,  (114 

6' = - b + a ( l  -c),  ( l i b )  

c' = a[ -c+ab] ,  (1lc)  

d' = - ~ d + a ( l  - e ) ,  ( 1 1 4  

e' = w [ - 7 e + a d ] ,  (114 
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where 

These equations are the same a.s those obtained by Veronis 
Rubenfeld (1975) have discussed a loop model of thermohaline 
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(1965); Siegmann & 
convection described 

by equations (1 1) with a = 1 (A = 3-4). The system possesses animportant symmetry, 
for it is invariant under the transformation that reverses the signs of a, b and d while 
leaving c and e unaltered, Moreover, all solutions are uniformly bounded in time. 

This model has several appealing properties. There is a static solution whose linear 
stability is identical to that of the static solution to the full problem. Moreover, results 
obtained from modified perturbation theory to second order are also identical. Equa- 
tion (9) includes a limited description of the build-up of the temperature gradient near 
the boundaries which ensures the existence of a finite solution for finite rT, while (10) 
provides for a similar build-up of the gradient of solute concentration which allows 
the possibility of subcritical convection. For a more careful justification of this 
approach in a related context, see Knobloch et al. (1981). 

3. Bifurcations from the static solution 
The model equations admit the trivial static solution a = b = c = d = e = 0, whose 

stability has often been discussed (Stern 1960; Veronis 1965; Baines & Gill 1969; 
Huppert & Moore 1976). Equations (1 1) linearized about this solution admit solutions 
that vary as exp st*. A t  

(13) 

one of the eigenvalues 8 is zero (corresponding to a marginally stable solution), while at  

r$j?) = 1 + 7 - 1 ~  S ,  

there is a pair of pure imaginary eigenvalues + i w ,  (corresponding to the onset of 
overstability), provided that 

Since (15) is equivalent to the condition 

r$) -r$) = o;A/ar > 0, (16) 

where A = 1 + a+ 7 ,  we may distinguish the following two cases: 
(i) 0; < 0. In this case as rT is increased the static solution loses stability at  rg), 

where there is a bifurcation to a triplet of steady solutions, one of which is the now 
unstable static solution. The other two are finite-amplitude solutions, differing only 
in the sign of a, b and d .  We may investigate the behaviour of the two branches of 
steady solutions in the neighbourhood of r$) in terms of the a-mode by setting 

rT = r($ + r$) a2 + o(~4). 

m3#;) = a ~ ~ + a ( 7 ~ - 1 ) r ~  = - ~ ~ A - ( ( l + a ) ( 1 + 7 ) w ~  

From equations (1 1) it then follows that 

(17) 
2-2 
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(cf. Huppert & Moore 1976). When r($ > 0 the bifurcation is supercritical and the two 
steady states are stable, while for r(2) < 0 the bifurcation is subcritical and the 
two steady states are unstable with one (small) positive eigenvalue (Hopf 1942; 
Sattinger 1973; Marsden & McCracken 1976). In either case the static solution loses 
stability to a direct mode. (We follow here the terminology described by Spiegel 
(1972).) Nothing special occurs at r($. 

(ii) wi  > 0 (r($ < r y ) .  Here the first bifurcation is a Hopf bifurcation (e.g. Marsden 
& McCracken 1976) at rT = r($ and the static solution loses stability to an overstable 
mode. As rT is increased towards r$! the pair of imaginary eigenvalues acquire positive 
real parts and their imaginary parts decrease until they become real and equal (Baines 
& Gill 1969). Thereafter one of them decreases and passes through zero at  rT = r$?, 
where there is another bifurcation. Since r f )  < 0, this bifurcation results for rT c r$? 
in two finite-amplitude steady solutions in the neighbourhood of the static solution, 
both of which are unstable with one (large) positive eigenvalue. The small eigenvalue 
that is present as a result of the proximity to the bifurcation point is now negative 
(cf. Hopf 1942). 

The behaviour of the branch of oscillatory solutions in the neighbourhood of r(T0) 
was investigated by Huppert & Moore (1976), who showed that the bifurcation could 
be subcritical. The required lengthy calculation can be considerably simplified by 
considering equations ( 1  1) rather than the full partial differential equations, by adopt- 
ing complex notation, and by using the results 

crr, = (w%+~~) (cr+1) / (1 -7 ) ,  cn(T0) = (wi+ l ) (a+7) / (1 -7 )  (18) 

to  express everything in terms of the oscillation frequency w,,. The procedure is des- 
cribed in more detail by Knobloch et aE. (1981). The transition from a supercritical 
bifurcation to a subcritical bifurcation occurs when r$‘) = 0, which reduces to  the 
quadratic equation 

4 ~ 4  - 4[7A(4 + 2w + ~ 2 )  + 2 w 4 A  + cv + 7 2 ) ]  - d A 7 ( A  + C T ~  + T ~ )  = 0. (19) 

This result was obtained by Rubenfeld & Siegmann (1977) for w = 1 and the predic- 
tions of (19) agree with the numerical results of Huppert & Moore for w = 8. Observe 
that there is always a positive root for w i ,  so that subcritical oscillations will occur for 
r, greater than the value corresponding to this root. Finally, we note that all results 
in this section hold both for the full partial differential system and for the simplified 
model. 

4. Properties of the steady branch 

Since 
aa’ ab’ act ad’ ae’ a a + ~ + ~ + ~ + ~  = - [ a + ( l + w ) ( 1 + 7 ) ]  < 0, 

equations (11) define a contraction mapping in a five-dimensional phase space. 
Solutions must therefore be attracted to a set of zero measure in the phase space; in 
particular, they may be attracted to a fixed point, a limit cycle or a strange attractor. 
In  this section we discuss nontrivial fixed points; limit cycles and strange attractors 
follow in 5 5.  
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The time-independent solution to equations (1 1). is given by 

which is a quadratic equation for a2(rT) (Veronis 1965). For r(g) < 0 there exists a 
minimum Rayleigh number for steady convection given by 

= [( 1 - 72)+ + (7rs)*]2 ; (22) 

from (14) and (22) it follows that +pin) < rg)  (cf. Veronis 1965). For r f )  > 0, r(pin) = r$?. 
In  the former case the steady solution will be called subcritical, while in the latter case 
i t  will be called supercritical. 

The condition for marginal stability (s = 0) of the steady branch is 

( 1  + a2)2 [(72 + a2)2 + ~ ~ ( 7 ~  - a2)] = rT( 1 - a2) (72 + u ~ ) ~ .  (23) 

~ ~ [ ( 7 ~ + ~ 2 ) 2 + 7 r & 2 -  l)] = 0. (24) 

By substituting for rT from (21) we can reduce equation (23) to 

The root a2 = 0 corresponds to the neutrally stable point r$?, while the other root is 
simply the condition for a turning point at  rT = rLmin), where r $ W  is given by (22). 
This result can be shown to be quite general (PoincarB 1885; Jeans 1928). For suppose 
that the equations of motion can be written in the form 

X’ = F ( X , r T ) ,  (25) 

where XT = (a, b,  c ,  d ,  e ) .  Let X, be a steady solution such that F(Xo, r T )  = 0 and let 
5 = X - X,. Then the equations describing the linear stability of the steady solution 
are 

5’ = (E) 5, ax 0 

with the corresponding dispersion relation 

The neutrally stable points (s = 0 )  must therefore satisfy the condition 

det (3) = 0. ax, 0 

However, for the steady solution 

At a turning point a perturbation in the steady solution is characterized by SrT = 0, 
SX, + 0. It follows that the condition (28) has to  be satisfied and that the point is 
therefore neutrally stable. This result depends on the roots of the dispersion relation 
being simple. Moreover, its converse is not true since neutrally stable points will also 
be found whenever (aF/ar,), = 0 (i.e. at r = fie)).  

We next consider the possibility of Hopf bifurcations characterized by the condition 
Res = 0. This condition yields an algebraic equation of sixth degree for a2. There are 
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(a) (b ) 
FIGURE 1. The amplitude-Rayleigh-number diagram for (a) case A, (b) case B. The solid heavy 
line indicates the stable steady branch, the broken heavy line the unstable steady branch, and 
the solid thin lines denote the maximum and root mean square values of a on the oscillatory 
branch. 
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Figure 2 (a). For the caption see next page. 

t* 

no large positive roots except for a possible root, present if u is sufficiently large, that 
corresponds to the bifurcation leading to aperiodic solutions of the Lorenz (1963) type. 
It can also be shown that the Lorenz root is the only positive root when 7 < 1. We 
have found no evidence for the presence of any other Hopf bifurcations for other 
values of the parameters. Since the model is not expected to be valid for the large 
values of rT corresponding to the Lorenz root we shall not discuss this bifurcation 
further. The properties of the steady branch can now be summarized as follows: 

(i) w i  < 0. If rf) > 0 the branch of steady solutions is supercritical and therefore 
stable (Hopf 1942), except for a possible bifurcation of the Lorenz type. The subcritical 
case with rf) < 0 can typically be obtained from the supercritical one by decreasing r .  
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FIGURE 2. Typical sets of oscillatory solutions for case A with ( a )  TT = 2.0, (b)  rT = 2.0219. 
The modes c and e, which are related to the thermal and solutal Nusselt numbers, have half the 
period of the other modes. The half-lengths of the ordinate axes are 0.5 for a, b, d ,  e and 0.1 
for c. 

Since an eigenvalue can change sign at r(!j?in) only, and there are no other Hopf bifur- 
cations, it follows from the continuous dependence of the eigenvalues on 7 that  the 
upper steady branch is again stable. Hence the positive eigenvalue associated with 
the unstable subcritical branch first increases from zero at r$? and then decreases, 
passing through zero at +Fin). 

(ii) ut > 0 (r$) < r$)) and r t )  < 0. This is the case of interest and is illustrated in 
figure 1 .  Note that only the branch of positive solutions is shown. This case can be 
obtained from (i) by increasing cr. As before it follows that the upper steady branch 
is stable, so that the large eigenvalue associated with the instability of the subcritical 
branch near r$? has to  pass through zero a t  r(;?ill). 

All the above properties are in excellent qualitative agreement with the numerical 
solutions of the full problem (Veronis 1968; Huppert & Moore 1976). We note, in 
particular, that tlie model supports the conjecture of Huppert & Moore that for 
7 < 1 the stable upper branch develops into an unstable subcritical branch which 
bifurcates from 1.8). 

5. The oscillatory solutions 
Tlie brarich of oscillatory solutions bifurcates from r$) .  In the context of the model 

r$) 2 r(y!il’), although this is not in general true of the full equations. (The truncation 
favours subcritical convection.) Nonlinear oscillations cannot be studied analytically 
and me have therefore integrated the equations ( 1  1) numerically, as an initial-value 
probleni, using it fourth-order Runge-Kiittn-~lcr80n schetne wit 11 iqy)ropriately 
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Case TS U 7 W 

A 0.5 10 0.4 8/3 
B 4 10 0.4 8/3 
C 6 10 0.4 8/3 

TABLE 1.  Parameters for cases considered in this paper. 

chosen timesteps. Linear theory shows that the value of R, a t  the onset of instability 
(whether by overstable or direct modes) is least when h = 2* (w = i). Here we shall 
confine our attention to calculations that are supported by the results of two-dimen- 
sional numerical experiments, and follow Veronis (1 968) and Huppert &, Moore (1976) 
in setting rn = 3 for all our computations. 

The numerical results provide values of a, b, c ,  d ,  e as functions oft*. We specify the 
amplitude of the oscillation by the maximum of la(t*)l once the solution has settled 
to a periodic state. The oscillatory branch can then be represented by plotting the 
amplitude as a function of r,. In this paper we describe three cases, differing only in 
the values of rs; the parameters for these cases are specified in table 1. Figure 1 (a) 
summarizes the results for case A .  The bifurcation is supercritical and the amplitude 

FIGURE 3. Limit cycles projccted onto the ad plane. Case A (a)  rT = 2.0, ( b )  rT = 2.0219. 
Case B (c) TT = 5.853, (d) TT = 5.8722. The axes hare half-lengths 0.2, 0.4 for case A and 1.0, 
0.5 for case B. 
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increases monotonically with rT until the branch reaches the subcritical unstable 
branch of the steady solutions a t  rT = rg) ,  where the oscillations disappear and the 
solution jumps to  the stable upper branch. If rT is now decreased again the solution 
will remain steady until rT = r ( ~ ~ n )  where it drops to the conductive solution. Thus 
throughout the range r$) < rT < r$) both stable steady solutions and stable limit 
cycles are possible and hysteresis can occur. However, the limit cycles are ‘less stable’ 
than the steady solutions, for a sufficiently large perturbation will send them to the 
upper steady branch. 

The system (11)  is invariant under a transformation that changes the signs of a, b 
and d, and leaves c and e unchanged. Thus if P is the time for a, b or a? to complete a 
full oscillation, the modes c and e,  which are related respectively to the thermal and 
solutal Nusselt numbers, will have periods $P. This is illustrated in figure 2, where 
two typical sets of solutions are shown, one for rT not far from r!$ and the other for 
rT close to r$?. The corresponding limit cycles, projected onto the ad-plane, are shown 
in figure 3. As rT approaches r$) M 2.021 95, the profiles flatten and the limit cycle 
becomes cigar-shaped. In  the neighbourhood of r$) the period increases rapidly, and 
as r f  -+ r$) it becomes infinite, although the amplitude showslittlevariation (figure 4). 
This behaviour can be better understood by considering a phase portrait of the 
solution a t  some fixed value of rT,r$)  < rT < r$?, as sketched in figure 5(a ) .  The 
oscillatory solution about the static solution (which is unstable to either an oscillatory 
or a direct mode depending on the value of r T )  is symmetrical, and corresponds to a 
limit cycle lying between two symmetrically spaced saddle points. At still larger 
amplitudes lie the symmetrically placed stable fixed points corresponding to steady 
solutions on the upper branch. Distant trajectories can wind round both fixed points 
several times, corresponding to decaying large-amplitude oscillations, before spiralling 
into one or other of the fixed points. As rT + r$? the separatrices passing through the 
saddle points connect, forming a heteroclinic limit cycle joining these points as indi- 
cated in figure 5 ( b )  (cf. figure 3 b ) ;  the period of this orbit is infinite. The final sketch, 
in figure 5 (c), represents trajectories for r$) < rT < r$); the limit cycle no longer exists 
and all trajectories ultimately converge on one of the two stable fixed points. This 
behaviour has some resemblance to the finite-amplitude motion of a simple pendulum. 
Indeed, Knobloch & Proctor (1981) have shown that in the limit 0 < OJ; << 1 the solu- 
tions can be obtained analytically in terms of elliptic functions, and have confirmed 
that the period becomes infinite as rT -+ r g ) .  

The main effect of increasing rs  is an increase in the amplitude of the oscillations, 
which can now be substantially larger than u ( r T )  on the unstable steady branch. As 
a function of time, a(t*) overshoots its value on the steady branch but the profile 
develops an increasingly long plateau, near that value, as rT -+ r$).  In the limit cycles 
this behaviour is reflected in the appearance of a pair of cusps near the saddle points. 
For larger values of r.q the transition between the oscillatory and steady branches 
proceeds in a qualitatively different nianner. The amplitude-Rayleigh-number dia- 
gram for case B is sho\vn in figure 1 ( b ) .  As rT is increased, the amplitude rises rapidly 
and the oscillations cease to reseniblo the linear solutions. The oscillatory branch 
reaches a maximum a t  TT z 5.8 and then begins to decrease with the solution a(t*) 
continuing to oscillate synimetrirall~ about the static solution a = 0 until rT z 5.855, 
where the solution bifurcates to nsynznwtrirnl oscillations, in which a( t )  spends more 
time on one side of n = 0 than on the other. The period P tloe~ not change at this 
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FIGURE 4. (a) The period P as afunction of r for case A. Note the rapid increase near r:lN 2.02 195. 
(b) The amplitude of the oscillation in the same range of r .  The upper and lower solid lines denote 
the maximum and root mean square values of a@*) respectively; the broken line indicates the 
unstable steady branch. Near r$) both the maximum and the r.m.s. value approach the steady 
branch, as the oscillations spend an increasingly large proportion of their period near the 
maximum amplitude. 

- (0 ) ( b )  (C) 

FIGURE 5. Sketches of the solution trajectories projected onto the a’+ plane for (a) 
rg) < rT < r$’, (b)  ?-T = r$) and (c) < ?-T < ?-$I. 0 denotes the static solution (0, O), U the 
unstable steady solutions and L the limit cycle. 

bifurcation although, since c and e are rectified forms of a, the bifurcation is mani- 
fested by a doubling of their periods from gP to P. Figure 6 shows the set of oscille- 
tions just before and shortly after this bifurcation. The corresponding limit cycles are 
displayed in figure 3 (c) and (d ) .  The asymmetry is discernible in the profile of a(t*) 
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(asymmetrical oscillations). Note that the asymmetry in modes a, b and d manifests itself as 
an apparent period doubling in modes c and e. The half-lengths of the ordinate axes are 1.0 for 
a, b, d, e and 0.1 for c. 
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in figure 6 ( b )  and quite apparent in c(t* )  and e(t* ) .  The corresponding limit cycle 
develops a marked bump in the first quadrant; there is, of course, another solution 
which is a mirror image of this one. As rT is increased the asymmetry becomes more 
prominent. By TT = 5.8723 a small loop develops in the neighbourhood of the unstable 
fixed point. At rT = 58724 the oscillatory solution has lost stability and the trajectory 
spirals in to the stable fixed point. 

Case C ,  with a higher value of r,, exhibits more exotic behaviour. The bifurcation 
to aaymmetry, at rT x 7.785, is followed by a bifurcation a t  which the period doubles, 
at rT x 7.793. The corresponding limit cycle is depicted in figure 7 (a) and the region 
indicated is enlarged in figure 8 (a) .  Successive cycles traverse the two segments alter- 
nately. At rT % 7.7949 there is a further period-doubling bifurcation that results in 
the appearance of four segments, as shown in figure 8 ( b ) .  The trajectory describes 
these segments in the order indicated and the solution repeats itself exactly after four 
cycles. Further period-doubling bifurcations result in the solution repeating itself 
after 2" cycles (n = 3,4, ...). We have located bifurcations at rT z 7.7953 (n = 3), 
rT % 7.79546 (n = 4) and rT z 7.79550 (n = 5). Details of solutions with n = 3,4 are 
shown in figure 8 ( c )  and ( d ) .  For rT > 7-7955 we have found no more periodic solutions 
and the oscillations are apparently aperiodic. 

Such aperiodic solutions are shown in figure 7 (b) ,  ( c )  for r[P = 7.796, 7.798 respec- 
tively. In  the former the trajectory wanders in the neighbourhood of an (unstable) 
asymmetrical solution. This neighbourhood is apparently well defined, although the 
distribution of trajectories within it is highly non-uniform, as shown in figure 8(e).  
In  the latter example the trajectory switches, apparently at random, from the 
neighbourhood of one asymmetrical solution to that of its mirror image. However, 
the trajectory possesses not just a double but a multiply braided structure, as shown 
in figures 7 (c) and 8 (f). We expect that there exists a hierarchy of such structures, 
as in the example studied by Marzec & Spiegel(l980). 

These aperiodic solutions extend over a finite range of rT but when rT > 7.8 t,he 
attractor loses its stability and the trajectory escapes to the stable fixed point. Figure 
7 (d)  shows a solution for rT = 7.8: the trajectory describes a number of cycles before 
escaping and spiralling into the fixed point. The loss of stability of the attractor is 
apparently associated with the development of a cusp (visible in the third quadrant) 
in the neighbourhood of either unstable fixed point. We conjecture that this occurs 
when the oscillatory branch doubles back, and that its unstable continuation ter- 
minates on the unstable steady branch as before. 

These phenomena are complicated by transient behaviour. The oscillations become 
extremely sensitive to small changes in T T  so that transients take a long time to decay. 
Marzec and Spiegel ( 1980) show aremarkable example of prolonged transient behaviour 
leading eventually to a doubly periodic limit cycle. Hence i t  may be necessary to 
integrate for many periods before the periodicity becomes apparent. For instance, 
the examples in figure 8 ( d ) - ( f )  were integrated up to t* x 500, covering about 100 
cycles. Moreover, the limit cycles have a restricted domain of attraction in this region. 
If rT is increased too rapidly, or the initial conditions are inappropriately chosen, the 
solution spirals to a fixed point on the stable steady branch. 
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FIGURE 7. Limit cycles for case C, projected onto the ad-plane. (a) Period doubling for rT = 
7.7948. Chaotic solutions for (b)  rT = 7.796, (c) rT = 7.898. ( d )  rT = 7.8: the attractor has lost 
stability and the trajectory spirals into a fixed point. The axes have half-lengths 1.0, 0-5. 

6. Discussion 
The results obtained above correspond closely to those found by Huppert & Moore 

(1976) for the full system defined by (3)-(7), apart from quantitative details. For 
moderate values of r, the transition from oscillations to steady motion takes place by 
the period of oscillations going infinite, and the oscillatory branch terminates on the 
unstable steady branch. For a case with rs = 4.81, CT = 1 , ~  = 0.1, Huppert & Moore 
found a transition to asymmetrical oscillations at  rT w 5.1 and interpreted this as a 
period doubling, owing to the apparent change in period of the Nusselt numbers (see 
figure 5 (d) of their paper). We have seen that the true period P does not alter at such 
a bifurcation. Later on, at rT NN 5.5, they obtained aperiodic solutions which persisted 
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FIGURE 8. Details of limit cycles for case C, in the region indicated in figure 7 (a) .  (a)  rT = 
7.7948 (doubling), (a) rT = 7.7952 (quadrupling), (c) rT = 7.79545 (octupling), (d) rT = 7.79548 
(16-fold), ( e )  rz = 7.796 (aperiodic), (f) rT = 7.798 (aperiodic). The scale for (f) differs from 
that for (a)-(e). 

until rT x 6.1. However, solutions to equations (11)  with their choice of parameters 
do not exhibit similar behaviour. Nevertheless, our results suggest that in the full 
problem a sequence of bifurcations with true successive doublings of the period was 
masked by apparent aperiodicity. In  order to detect the first two doublings of P we 
used a small but variable time step and integrated, using a fourth-order scheme, for 
more than 50 periods. This is possible for ordinary, but not for partial, differential 
equations. 

The bifurcation pattern that we have described here is similar to the pitohfork 
pattern found for the logistic difference equation (May 1976). At each successive 
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bifurcation the limit cycle becomes unstable, shedding two stable orbits with twice 
its period; this is manifested in the splitting of the trajectory, cf. figure 8(a)-(d). 
Although we have not succeeded in locating more than 5 such bifurcations, we believe 
that there is an infinite sequence of pitchfork bifurcations, at each of which the period 
doubles, until it  becomes infinite a t  some finite value of rT. This resembles the beha- 
viour of solutions to difference equations (May 1976) as well as those to various third- 
and fifth-order autonomous systems. Baker, Moore & Spiegel (1971) studied a model 
of overstable convection in which the tmnsition to asymmetrical oscillations occurred 
when a stability parameter A w 0.57 and was followed by successive period doublings 
in the range 0.620 < A < 0.622 (Marzec & Spiegel 1980) after which the solution 
became aperiodic. As the Rayleigh number is decreased, the solutions of the Lorenz 
equations (Shimizu & Morioka 1978; Morioka & Shimizu 1978; Franceschini 1980) 
also show a bifurcation to asymmetry followed by successive period doubling until 
chaotic solutions are obtained. 

In such systems, if rp )  is the value of rT at which the nth doubling occurs, the loca- 
tion of successive bifurcations may be described in terms of the ratio 

Feigenbaum (1978) has shown for a wide class of difference equations that 8, tends 
asymptotically to a value 4-669 2. .  . for large n. It has been conjectured (e.g. Pomeau 
1977) that the sa.me universal constant applies to differential equations too. Our results 
for case C are consistent with this conjecture. Marzec & Spiegel (1980) found, for a 
third-order system of differential equations, that IS, = 6.9 and 8, = 4.8. Franceschini 
(1980) established, for a particular sequence of bifurcations in the Lorenz system, that 
8, = 2.32,S2 = 4.32, IS, = 4-58,1S4 = 4-67. Similar results have beenreported for afifth- 
order system (Boldrighini & Franceschini 1979; Franceschini & Tebaldi 1979). These 
calculations all suggest that the location of successive period doublings is asymptotic- 
ally universal. Moreover, for the present model such bifurcations were preceded by a 
bifurcation to asymmetrical solutions, which is a necessary prerequisite for period 
doubling. Beyond the accumulation point of these bifurcations, estimated from 
8, w 5,  we have found only aperiodic solutions despite integrating for 150 cycles. 
Collectively the above results strongly suggest that the model equations contain a 
strange attractor. This attractor is present at  much smaller Rayleigh numbers than 
the Lorenz attractor, in a regime where the model provides a qualitatively accurate 
indication of the behaviour of solutions to the full two-dimensional problem. 

We believe, therefore, that there is a narrow range of RT containing an infinite 
sequence of pitchfork bifurcations for the full problem too, though we doubt whether 
it is possible to find it. The only means of investigating such a transition seems to be 
by solving a simplified problem like that which we have considered here. Since thermo- 
solutal convection is the paradigm for a range of doubly diffusive configurations, we 
expect that similar solutions exist for all those problems too. Finally, it should be 
pointed out that, although it is of great interest to establish the nature of these tran- 
sitions for solutions to the relevant equations, we do not expect that doubling could 
be demonstrated in any real system. As in the numerical experiments, aperiodicity 
would gradually become more marked and it would be difficult to distinguish 'pre- 
turbulence ' from actual chaos. 
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